Synthesis and Structure-Opioid Activity Relationships of trans-(\pm)-3,4-Dichloro- N-methyl- N-[4- or 5-hydroxy-2-(1-pyrrolidiny)cyclohexyl]benzeneacetamides

CHEN-YU CHENG, CHIN-YUAN CHEN AND PAO-LUH TAO*
School of Pharmacy, College of Medicine, National Taiwan University and *Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R. O. C.

Abstract

To explore the effects of attaching a hydroxy function to the cyclohexane ring of κ-selective opioid N - [2-(1pyrrolidinyl)cyclohexyl]benzeneacetamides, trans-(\pm)-3,4-dichloro- N-methyl- N-[4- or 5 -hydroxy-2-(1-pyrrolidiny)cyclohexyl]benzeneacetamides (1-4) and their benzoates (5-8) have been synthesized in a divergent and stereoselective manner. When compared with the parent compound U-50488, hydroxy derivatives 1-4 maintained high selectivity towards the κ-opioid receptor (μ / κ ratio $=24$ to >91); while displaying significant reduction in binding affinity ($\mathrm{K}_{\mathrm{i}, \kappa}=75-218 \mathrm{nM}$). The lowest κ-affinity was observed with compound 4 , where the hydroxy group is attached at the 5 -axial or $5-\beta$ position. Further reduction in κ-affinity was observed when the hydroxy function was benzoylated. However, the 4β, 5α, and 5β isomers ($6-8$) maintained varying degrees of κ-selectivity; the 4α-isomer compound 5 , with its benzoate moiety situated at the 4 -axial position is now a moderately potent μ selective opioid ($\mathrm{K}_{\mathrm{i}, \mu}=168 \mathrm{nM}, \mu / \kappa=0.076$). The results suggest the importance of lipophilicity in binding to opioid receptors and the presence of a specific lipophilic binding site on the μ-opioid receptor.

In the search for centrally acting analgesics, selective nonpeptide κ-opioid receptor agonists have received considerable attention in recent years (Scopes 1993, 1994) because they have been demonstrated to provide effective analgesia with minimal morphine-like side effects such as physical dependence and respiratory depression (Millan 1990). During our previous efforts (Cheng et al 1992; Chen et al 1993) in the discovery of selective and irreversible ligands for the κ-opioid receptor based on the structure of the prototype κ-opioid U 50488 (Szmuszkovicz \& Von Voigtlander 1982), (\pm)-($1 \alpha, 2 \beta$, 4α)-3,4-dichloro- N-methyl- N-[4-hydroxy-2-(1-pyrrolidiny)cyclohexyl]benzeneacetamide (1) (Fig. 1) was synthesized as an intermediate, and found to retain moderate affinity and selectivity towards the κ-opioid receptor. Therefore, we decided to further explore the structure-activity relationships of U-50488 analogues with a hydroxy substituent on the cyclohexane ring. Reported here are the synthesis and opioid-receptor binding affinities of four isomeric trans-(\pm)-3,4-dichloro-N-methyl- N -[4- or 5 -hydroxy-2-(1-pyrrolidiny)cyclohexyl]benzeneacetamides (1-4) and their benzoate esters (5-8) (Fig. 1). Halfpenny et al (1990) have reported a series of 4 - or 5methoxy substituted derivatives (Ia-d) (Fig. 1) of the benzofuran analogue of the potent κ-selective opioid PD 117302. However, their synthetic strategy starting from methoxybenzenes cannot be adopted for the preparation of compounds 1-4.

[^0]
Materials and Methods

General procedures

Melting points were taken in a capillary tube by using the Laboratory Devices, MEL-TEMP II melting point apparatus and are uncorrected. NMR spectra were recorded on a Bruker AMX-400 or AM-300 FT-NMR spectrometer; chemical shifts were recorded in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}$. IR spectra were determined with a Perkin-Elmer 1760-X FT-IR spectrometer. Mass spectra were recorded on a Jeol JMS-D300 or Finnigan TSQ-46C mass spectrometer; high-resolution mass spectra were obtained with a Jeol JMS-HX110 spectrometer. Elemental analysis was performed with a Perkin-Elmer 2400CHN instrument. TLC was performed on Merck (Art. 5715) silica gel plates and visualized under UV light (254 nm), upon treatment with iodine vapour, or upon heating after treatment with 5% phosphomolybdic acid in ethanol. Flash column chromatography was performed with Merck (Art. 9385) 4063 mm silica gel 60 .

Syntheses

3-Cyclohexen-1-ol (9). To a stirred solution of 1,4-cyclohexanediol ($80 \mathrm{~g}, 0.69 \mathrm{~mol}$) in dry pyridine $(800 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}, was added dropwise a solution of p-toluenesulphonyl chloride ($118.2 \mathrm{~g}, 0.62 \mathrm{~mol}$) in dry pyridine (400 mL). The resulting mixture was stirred continuously at $0^{\circ} \mathrm{C}$ overnight, and evaporated. The residue was then treated with 18% aqueous $\mathrm{HCl}(200 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a mixture of 1,4-cyclohexanediol mono-toluenesulphonate and 1,4-cyclohexanediol di-toluenesulphonate as a yellow liquid ($105.4 \mathrm{~g}, 54 \%$, mono-/di- $=9: 1$ based on HPLC, Merck Lichrospher $100 \mathrm{RP}-18(5 \mathrm{mM}) 0.4 \times 25 \mathrm{~cm}$, $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}=60: 40$).

CHEN－YU CHENG ET AL

1.8

PD 117，302

1a－d

Fig．1．Structures of U 50,488 ，PD 117，302 and compounds 1－8 $(\mathrm{R}=\mathrm{H}: 1(4 \alpha) ; 2$（ 4β ）； $\mathbf{3}(5 \alpha) ; 4(5 \beta) . \mathrm{R}=\mathrm{Bz:} 5$（4 α ）； 6 （ 4β ）； 7 （ 5α ）； 8 （ 5β ））and Ia－d（Ia： 4α ；Ib： 4β ；Ic： 5α ；Id： 5β ）．

The above mixture of toluenesulphonates was mixed with 1，8－diazabicyclo［5，4，0］－undec－7－ene（ $60 \mathrm{~g}, 0.39 \mathrm{~mol}$ ），degased， and heated at $120^{\circ} \mathrm{C}$ overnight．The resulting mixture was dis－ tilled（ 30 mbar， $86-87^{\circ} \mathrm{C}$ ）to give 9 as a colourless liquid （ $19.7 \mathrm{~g}, 60 \%$ ）：IR（neat） $3338,3026,2921,2841,1651,1439$ ， 1364，1072， $1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5 \cdot 7-5.6(\mathrm{~m}$ ， $1 \mathrm{H}), 5 \cdot 6-5 \cdot 5(\mathrm{~m}, 1 \mathrm{H}), 3 \cdot 9-3 \cdot 8(\mathrm{~m}, 1 \mathrm{H}), 2 \cdot 4-2 \cdot 2(\mathrm{~m}, 2 \mathrm{H}), 2 \cdot 2-$ $1.9(\mathrm{~m}, 2 \mathrm{H}), 1.9-1.8(\mathrm{~m}, 1 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 126.7,124 \cdot 0,66 \cdot 8,34.2,30.8,23 \cdot 6$ ；MS m／e $98\left(\mathrm{M}^{+}\right), 97$（base peak）， $79,67,55$.

Cyclohex－3－enol t－butyldimethylsilyl ether（10）．To a refluxed solution of $9(2.0 \mathrm{~g}, 20 \mathrm{mmol})$ and imidazole（ $1.8 \mathrm{~g}, 27 \mathrm{mmol}$ ） in dry THF（ 8 mL ）under N_{2} ，was added slowly a solution of t－ butyldimethylsilyl chloride（ $3.4 \mathrm{~g}, 23 \mathrm{mmol}$ ）in dry THF （ 9 mL ）．The resulting mixture was refluxed for another 2 h ， cooled to room temperature $\left(21^{\circ} \mathrm{C}\right)$ ，and evaporated．The residue was treated with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ ，and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \times 3 \mathrm{~mL})$ ．The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ ，and evaporated to give 10 as a colourless liquid （ $3.95 \mathrm{~g}, 91 \%$ ）：bp， $68^{\circ} \mathrm{C}$ at $7 \mathrm{mbar}, \mathrm{IR}$（neat） $3027,2955-2858$ ， 1652，1256，1106， $1093 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $5 \cdot 6-5.5(\mathrm{~m}, 2 \mathrm{H}), 3.9-3.8(\mathrm{~m}, 1 \mathrm{H}), 2 \cdot 3-1.9(\mathrm{~m}, 4 \mathrm{H}), 1 \cdot 8-1.7$ （m， 1 H$), 1 \cdot 6-1.5(\mathrm{~m}, 1 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 0.0(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 126 \cdot 6,124.7,68 \cdot 0,35 \cdot 2,31 \cdot 8,25.9,24.4$ ， 18.2 ，-4.6 ；MS m／e $211\left(\mathrm{M}^{+}-1\right), 197,155,101,75$（base peak）．
（土）－（1 $\alpha, 3 \alpha, 6 \alpha)-3-\mathrm{t}-$ Butyldimethylsilyloxy－7－oxabicyclo［4，1，0］－ heptane（11）and（ \pm ）－（ $1 \alpha, 3 \beta, 6 \alpha)$－3－t－butyldimethylsilyloxy－7－ oxabicyclo［4，1，0］heptane（12）．To a stirred solution of $\mathbf{1 0}$ （ $4.44 \mathrm{~g}, 20.9 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ ，cooled in ice－water bath，was added $70 \% \mathrm{~m}$－CPBA $(5.66 \mathrm{~g}, 23.0 \mathrm{mmol})$ ．The cooled mixture was stirred for another 2 h ，and then allowed to warm to room temperature．After the addition of 20% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution（ 3.6 mL ）and further stirring for 1 h ，saturated aqueous NaHCO_{3} solution（ 20 mL ）was added． The organic layer was separated，and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$ ．The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a mixture of 11 and 12 as a colourless oil $(4.63 \mathrm{~g}, 97 \%, 11 / 12=57: 43$ based on GC，SE－30 3% on Chrom－WHP $80 / 100$ mesh $0.4 \times 300 \mathrm{~cm}$ ）．The mixture（ 0.5 g ）was chromatographed （silica gel；n－hexane ： CHCl_{3} ：ether $=100: 10: 1$ ）to give pure 11 and $\mathbf{1 2}$ in a molar ratio of $59: 41\left(\mathrm{R}_{\mathrm{f}}=0.36,0.48, \mathrm{CHCl}_{3}\right)$ ．

11：${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3 \cdot 6-3 \cdot 5(\mathrm{~m}, 1 \mathrm{H}), 3 \cdot 1-3 \cdot 0(\mathrm{~m}, 2$ H），2．2－2．1（m， 2 H ），1．8－1．7（m， 2 H ），1．5－1．4（m， 2 H ）， 0.8 $(\mathrm{s}, 9 \mathrm{H}), 0.0(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 67 \cdot 3,51 \cdot 6$ ， $51 \cdot 1,34 \cdot 2,27 \cdot 7,25 \cdot 8,24 \cdot 0,18 \cdot 1,-4 \cdot 7 ;$ MS m／e $228\left(\mathrm{M}^{+}\right)$， 211， 171 （base peak），167，149，97．12：${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ （ppm）3•8－3．7（m，1 H），3•1（s，2 H），2•2－2．0（m， 2 H$), 1 \cdot 9-1 \cdot 6$ （m，2 H），1．6－1．4（m， 1 H$), 1.4-1.2(\mathrm{~m}, 1 \mathrm{H}), 0.8(\mathrm{~s}, 9 \mathrm{H}), 0.0$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 64 \cdot 3,51 \cdot 9,51.8,34 \cdot 0$ ， $27.6,25 \cdot 8,20.7,18 \cdot 0,-4.8$ ；MS m／e $228\left(\mathbf{M}^{+}\right), 213,171$ （base peak），129，101，79， 75.
（土）－（I $1 \alpha, 2 \beta, 4 \beta)$－2－（1－Pyrrolidinyl）cyclohexane－1，4－diol 4－t－ butyldimethylsilyl ether（13），（ \pm ）－（1 $\alpha, 2 \beta, 4 \alpha)-2-(1-p y r r o l i d i-$ nyl）cyclohexane－1，4－diol 4－t－butyldimethylsilyl ether（14）and （土）－（1 $\alpha, 2 \beta, 5 \beta)$－6－（1－pyrrolidinyl）cyclohexane－1，3－diol 3－t－ butyldimethylsilyl ether（15）．A mixture of $11+12$（4．0 g， $17.5 \mathrm{mmol})$ and pyrrolidine $(14.5 \mathrm{~mL}, 175 \mathrm{mmol})$ was refluxed under N_{2} overnight．The excess pyrrolidine was evaporated to give an orange－coloured liquid $(5.23 \mathrm{~g}$ ，crude yield 99% ）．A fraction of the crude（ 1 g ）was chromatographed （silica gel； $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=100: 10: 1$ ）to give pure 13， 14 and 15 in a molar ratio of $8: 69: 23\left(\mathrm{R}_{\mathrm{f}}=0.7\right.$ ， 0.6 and 0.5 ，respectively）．13：IR（neat）3366，2932－2857， 1255， $1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.6-3.5(\mathrm{~m}, 1$ H），3．4－3．3（m，1 H），2．9－2．7（m， 4 H$), 2 \cdot 6-2 \cdot 5(\mathrm{~m}, 1 \mathrm{H}), 2 \cdot 1-$ $1.7(\mathrm{~m}, 7 \mathrm{H}), 1.4-1 \cdot 1(\mathrm{~m}, 3 \mathrm{H}), 0.8(\mathrm{~s}, 9 \mathrm{H}), 0.0(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}-$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 70 \cdot 6,69 \cdot 8,62 \cdot 5,47 \cdot 3,33 \cdot 6,30 \cdot 9,29.7$ ， $25 \cdot 8,23 \cdot 5,18 \cdot 0,-4.7,-4.8$ ；MS m／e $299\left(\mathrm{M}^{+}\right), 284,242$ ， 240 （base peak）；HRMS m／e（ \mathbf{M}^{+}）calculated 299．2281， observed 299．2279；nOe：irra． $3.6 \mathrm{ppm}, \delta(\mathrm{ppm}) 2.6$（1．85\％） 1.9 （3．66\％）．14：IR（KBr）3418，2952－2857，1255， $1041 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 4 \cdot 2-4 \cdot 1(\mathrm{~m}, 1 \mathrm{H})$ ， $4 \cdot 0(\mathrm{~s}, 1 \mathrm{H}), 3 \cdot 4-3 \cdot 3(\mathrm{~m}, 1 \mathrm{H}), 3 \cdot 0-2.9(\mathrm{~m}, 1 \mathrm{H}), 2 \cdot 7-2 \cdot 5(\mathrm{~m}, 4$ H）， $1.9-1.4(\mathrm{~m}, 8 \mathrm{H}), 1.4-1.2(\mathrm{~m}, 2 \mathrm{H}), 0.8(\mathrm{~s}, 9 \mathrm{H}), 0.0(\mathrm{~s}, 6$ $\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 70.5,66.8,59.5,47.5,31.4$ ， $29.1,27.4,25.7,23.5,17.9,-4.9,-5.0 ;$ MS m／e $299\left(\mathrm{M}^{+}\right)$， 284，242， 240 （base peak）；HRMS m／e $\left(\mathrm{M}^{+}\right)$calculated 299．2281，observed 299.2284 ；nOe：irra． $4.1 \mathrm{ppm}, \delta(\mathrm{ppm})$ 1.8 （ 7.91% ）， 1.7 （3．84\％）， 1.4 （ 8 ； 84% ）， 0.0 （ 8.34% ）．15：IR （neat） $3369,2953-2857,1255,1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 4.4(\mathrm{~s}, 1 \mathrm{H}), 4.1-4.0(\mathrm{~m}, 1 \mathrm{H}), 3.8-3.7(\mathrm{~m}, 1 \mathrm{H}), 2.9-$ $2 \cdot 7(\mathrm{~m}, 4 \mathrm{H}), 2 \cdot 6-2 \cdot 5(\mathrm{~m}, 1 \mathrm{H}), 2 \cdot 1-2 \cdot 0(\mathrm{~m}, 1 \mathrm{H}), 1 \cdot 9-1 \cdot 5(\mathrm{~m}, 7$ H）， $1.5-1.3(\mathrm{~m}, 2 \mathrm{H}), 0.8(\mathrm{~s}, 9 \mathrm{H}), 0.0(\mathrm{~d}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 66 \cdot 8,66 \cdot 1,65 \cdot 5,47 \cdot 8,40 \cdot 6,32 \cdot 3,25 \cdot 6,23 \cdot 5$ ， $17 \cdot 8,16 \cdot 0,-5 \cdot 0,-5 \cdot 1$ ；MS m／e $299\left(\mathrm{M}^{+}\right), 284,242,110$ （base peak）；HRMS m／e（ M^{+}）calculated 299．2281，observed 299．2276；nOe：irra． $4.0 \mathrm{ppm}, \delta$（ppm） 2.1 （3．64\％）， 1.7 （ 1.81% ）， 1.4 （ 7.56% ）， 0.0 （ 4.28% ）．
（ \pm ）－（ $1 \alpha, 2 \beta, 4 \alpha)$－3，4－Dichloro－N－methyl－N－［4－t－butyldimethylsi－ lyloxy－2－（1－pyrrolidinyl）－cyclohexyl］benzeneacetamide（16）， （ \pm ）－（1 $\alpha, 2 \beta, 5 \alpha)$－3，4－dichloro－$N$－methyl－N－［5－t－butyldimethylsi－ lyoxy－2－（1－pyrrolidinyl）－cyclohexyljbenzeneacetamide（17） and $\quad(\pm)-(1 \alpha, 2 \beta, 5 \beta)-3,4$－dichloro－N－methyl－N－［5－t－butyldi－ methylsilyoxy－2－（1－pyrrolidinyl）－cyclohexyllbenzeneacetamide （18）．To a stirred solution of a mixture of $13+14+15$ $(2.21 \mathrm{~g}, 7.38 \mathrm{mmol})$ ，obtained from the previous step，and $\mathrm{Et}_{3} \mathrm{~N}(1.84 \mathrm{~mL}, 13.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}(0.81 \mathrm{~mL}, 10.4 \mathrm{mmol})$ was added slowly． After stirring for 1 h ，saturated aqueous NaHCO_{3} solution was added．The organic layer was separated，and the aqueous layer
was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$ ．The organic layers were combined，dried $\left(\mathrm{MgSO}_{4}\right)$ ，and evaporated to give a crude mixture of the corresponding mesylates（ 2.78 g ）．

Without further separation，the crude mesylates were dis－ solved in dry THF（ 20 mL ），together with a solution of 40% $\mathrm{CH}_{3} \mathrm{NH}_{2}$ in $\mathrm{CH}_{3} \mathrm{OH}(14 \mathrm{~mL})$ ．The mixture was heated at $120^{\circ} \mathrm{C}$ in a sealed vessel for 4 h ，then cooled to room tem－ perature，and evaporated．The residue was treated with $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$ ．The com－ bined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude mixture of diamines as a brown－coloured liquid（ 2.33 g ）．

To a stirred solution of the above crude mixture（ 2.33 g ）and $\mathrm{Et}_{3} \mathrm{~N}(1.44 \mathrm{~mL}, 10.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（ 20 mL ），was added slowly 3,4 －dichlorophenylacetyl chloride $(1.54 \mathrm{~mL}$ ， 9.7 mmol ）．After the mixture was stirred continuously over－ night，saturated aqueous NaHCO_{3} solution（ 10 mL ）was added． The organic layer was separated，and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$ ．The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude mixture，which was chromatographed（silica gel； $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=100: 4: 1$ ）to give 16 and its two isomers 17 and 18 （total yield， $2.62 \mathrm{~g}, 71.0 \%$ ； 16：17：18＝52：12：36； $\mathrm{R}_{\mathrm{f}}=0.5,0.4$ and 0.3 ，respectively， $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=100: 5: 1$ ）．16： $\mathrm{mp} 94.5-95.5^{\circ} \mathrm{C}$ （white crystals from n－hexane）； HCl salt：mp $240-241^{\circ} \mathrm{C}$ （white crystals from isopropanol）；IR（KBr）2952－2856，1638， $1255,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.4-7.3(\mathrm{~m}, 2$ H）， $7 \cdot 1-7.0(\mathrm{~m}, 1 \mathrm{H}), 4.5(\mathrm{td}, J=11.8 \& 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4 \cdot 1(\mathrm{~s}, 1$ H）， $3.7(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.6(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.3(\mathrm{td}$, $J=11.5 \& 3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.8(\mathrm{~s}, 3 \mathrm{H}), 2.7-2.6(\mathrm{~m}, 4 \mathrm{H}), 2.0-1.3$ $(\mathrm{m}, 10 \mathrm{H}), 0.8(\mathrm{~s}, 9 \mathrm{H}), 0.0(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ （ppm） $170 \cdot 1,135 \cdot 8,132 \cdot 3,131 \cdot 0,130 \cdot 9,130 \cdot 2,128.4,66 \cdot 6$ ， $54 \cdot 1,52 \cdot 8,47 \cdot 3,40.5,32 \cdot 2,30.0,29.9,25 \cdot 7,23.9,17.9$ ， $-4.9,-5.0 ; \mathrm{MS} \mathrm{m} / \mathrm{e} 498\left(\mathrm{M}^{+}\right), 483,441,281,240$（base peak）；HRMS m／e $\left(\mathrm{M}^{+}\right)$calculated 498．2236，observed 498.2209 ；Anal．calculated for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiCl}_{2}$ ：C $60 \cdot 10, \mathrm{H}$ 8.07 ，N 5.61 ，found： $\mathrm{C} 59.71, \mathrm{H} 7.90, \mathrm{~N} 5.70$ ； HCl salt；Anal． calculated for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiCl}_{2} \mathrm{HCl}$ ：C 56．01，H 7．71， N 5.23 ， found：C 56.00 ，H 7．64，N 5.11 ；17：mp $100.5-101^{\circ} \mathrm{C}$（white crystals from n－hexane）；${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$（ppm）7．4－7．3 $(\mathrm{m}, 2 \mathrm{H}), 7 \cdot 1-7.0(\mathrm{~m}, 1 \mathrm{H}), 4.6(\mathrm{~s}, 1 \mathrm{H}), 3.8-3.4(\mathrm{~m}, 4 \mathrm{H}), 2.8$ $(\mathrm{s}, 3 \mathrm{H}), 2 \cdot 8-2.4(\mathrm{~m}, 4 \mathrm{H}), 1.9-1.2(\mathrm{~m}, 10 \mathrm{H}), 0.8(\mathrm{~s}, 9 \mathrm{H}), 0.0$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 172 \cdot 7,136 \cdot 0,131 \cdot 8$ ， $131 \cdot 7,130 \cdot 3,129.9,129.6,65 \cdot 3,57 \cdot 0,52 \cdot 1,47 \cdot 9,40 \cdot 3,31 \cdot 3$ ， $30 \cdot 3,25 \cdot 6,24 \cdot 9,24 \cdot 4,23 \cdot 0,17 \cdot 8,-4 \cdot 6$ ；MS m／e $498\left(\mathrm{M}^{+}\right)$， 483，441，388，366，281， 110 （base peak）；HRMS m／e（ \mathbf{M}^{+}） calculated 498．2236，observed 498．2226；Anal．calculated for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiCl}_{2}$ ：C $60 \cdot 10, \mathrm{H} 8 \cdot 07$ ，N $5 \cdot 61$ ，found：C $60 \cdot 16$ ，H 8．22，N 5．47；18：${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.4-7.3(\mathrm{~m}, 2 \mathrm{H})$ ， $7 \cdot 1-7.0(\mathrm{~m}, 1 \mathrm{H}), 4 \cdot 1-4 \cdot 0(\mathrm{~m}, 2 \mathrm{H}), 3 \cdot 7-3.5(\mathrm{~m}, 2 \mathrm{H}), 2 \cdot 8(\mathrm{~s}, 3$ H），2．8－2．4（m，5H），1．9－1．2（m， 10 H$), 0.8(\mathrm{~s}, 9 \mathrm{H}), 0.0(\mathrm{~s}, 6$ $\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 169.9,136 \cdot 1,131 \cdot 3,130 \cdot 6$ ， $130 \cdot 1,128 \cdot 8,128 \cdot 3,66 \cdot 7,59 \cdot 7,55 \cdot 0,48 \cdot 0,40 \cdot 9,38 \cdot 9,38 \cdot 7$ ， $36 \cdot 9,32 \cdot 3,27 \cdot 2,25 \cdot 8,24 \cdot 0,23.8,18 \cdot 4,-4.9,-5 \cdot 0$ ；MS $\mathrm{m} / \mathrm{e} 498\left(\mathrm{M}^{+}\right), 483,441,388,366,281,110$（base peak）； HRMS m／e（ M^{+}）calculated 498．2236，observed 498．2230．
（土）－（1 $\alpha, 2 \beta, 4 \alpha)$－3，4－Dichloro－N－methyl－N－［［4－hydroxyl－2－（1－ pyrrolidinyl）J－cyclohexyljbenzeneacetamide（1）．A mixture of $16(0.70 \mathrm{~g}, 1.40 \mathrm{mmol}), 37 \%$ aqueous $\mathrm{HCl}(3.7 \mathrm{~mL})$ ，and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(10 \mathrm{~mL})$ was stirred at room temperature for 5 h ．

After evaporation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ，the residue was treated with saturated aqueous NaHCO_{3} solution（ 30 mL ）and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$ ．The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ ，and evaporated to give 1 as a white solid（ 0.52 g ， 96% ）：IR（neat） 3323 （br．），2937－2869，1645， $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7 \cdot 4-7 \cdot 3(\mathrm{~m}, 2 \mathrm{H}), 7 \cdot 1-7 \cdot 0(\mathrm{~m}, 1 \mathrm{H})$ ， $4.6-4.4(\mathrm{~m}, 1 \mathrm{H}), 4.2(\mathrm{~s}, 1 \mathrm{H}), 3.7(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.6(\mathrm{~d}$ ， $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3 \cdot 3-3 \cdot 2(\mathrm{~m}, 1 \mathrm{H}), 2.8(\mathrm{~s}, 3 \mathrm{H}), 2 \cdot 7-2.4(\mathrm{~m}, 4$ H），2．0－1．4（m， 10 H ）；${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170 \cdot 1$ ， $135 \cdot 7,132 \cdot 3,131 \cdot 0,130 \cdot 8,130 \cdot 2,128 \cdot 3,66 \cdot 1,54 \cdot 5,52 \cdot 6,47 \cdot 2$ ， $40 \cdot 5,31 \cdot 7,30 \cdot 1,29 \cdot 3,23 \cdot 9,23 \cdot 4 ;$ MS m／e $385\left(\mathrm{M}^{+}+1\right), 167$ （base peak），126，84；HRMS m／e（ M^{+}）calculated 384．1372， observed 384.1371 ； HCl salt： $\mathrm{mp} .254-255^{\circ} \mathrm{C}$（white crystals from ethyl acetate）；Anal．calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}, \mathrm{HCl}$ ： C 54．10，H 6．45，N 6．64，found：C 53．99，H 6．39，N 6.51.
（土）－（1 $\alpha, 2 \beta, 5 \alpha)-3,4-$ Dichloro－N－methyl－N－［［5－hydroxy－2－（1－py－ rrolidinyl）］－cyclohexyl］benzeneacetamide（3）．Compound 17 （ $0.5 \mathrm{~g}, 100 \mathrm{mmol}$ ）was subjected to the same procedure as described above to give $3(0.37 \mathrm{~g}, 96 \%)$ ：${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ （ppm） $7 \cdot 4-7.3(\mathrm{~m}, 2 \mathrm{H}), 7 \cdot 1-7.0(\mathrm{~m}, 1 \mathrm{H}), 4 \cdot 6-4.5(\mathrm{~m}, 1 \mathrm{H})$ ， 3．7－3．5（m， 4 H ）， $2 \cdot 8(\mathrm{~s}, 3 \mathrm{H}), 2 \cdot 7-2 \cdot 6(\mathrm{~m}, 1 \mathrm{H}), 2 \cdot 6-2 \cdot 4(\mathrm{~m}, 4$ $\mathrm{H}), 2 \cdot 1-1 \cdot 3(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 169 \cdot 7$ ， $135 \cdot 5,132 \cdot 4,131 \cdot 0,130 \cdot 7,130 \cdot 3,128 \cdot 6,128 \cdot 2,68 \cdot 9,59 \cdot 3$ ， $58 \cdot 2,57.8,52 \cdot 4,48 \cdot 8,47 \cdot 2,40.5,39.5,38 \cdot 5,33 \cdot 9,29.9,23.9$ ， 18．7；MS m／e $384\left(\mathrm{M}^{+}\right), 366,314,274,167,110$（base peak）， 97；HRMS m／e（ M^{+}）calculated 384．1372，observed $384 \cdot 1394$ ； HCl salt：mp $260 \cdot 5-261.5^{\circ} \mathrm{C}$（white crystals from ethyl acet－ ate）；Anal．calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}, \mathrm{HCl}: \mathrm{C} 54 \cdot 10, \mathrm{H}$ 6.45 ，N 6.64 ，found：C 53.79 ，H 6.20 ，N 6.27 ．
（ $\pm)$－（l $\alpha, 2 \beta, 5 \beta$ ）－3，4－Dichloro－N－methyl－N－［［5－hydroxy－2－（l－p－ yrrolidinyl）］－cyclohexyl］benzeneacetamide（4）．Compound 18 $(0.5 \mathrm{~g}, 100 \mathrm{mmol})$ was subjected to the same procedure as described for 1 to give $4(0.37 \mathrm{~g}, 97 \%)$ ：${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ （ppm）7．4－7．3（m， 2 H ），7．1－7．0（m，1 H），4．9－4．8（m， 1 H ）， $4 \cdot 1-4 \cdot 0(\mathrm{~m}, 1 \mathrm{H}), 3 \cdot 7-3 \cdot 5(\mathrm{~m}, 3 \mathrm{H}), 2 \cdot 8(\mathrm{~s}, 3 \mathrm{H}), 2 \cdot 7-2 \cdot 6(\mathrm{~m}, 1$ $\mathrm{H}), 2 \cdot 6-2.4(\mathrm{~m}, 4 \mathrm{H}), 1.9-1.6(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ （ppm）170．2，169．9，136．1，135．6，132．3，132．1，131．4，130．7， $130 \cdot 6,130 \cdot 5,130 \cdot 3,130 \cdot 1,129 \cdot 0,128 \cdot 2,66 \cdot 0,65 \cdot 9,59 \cdot 8,58 \cdot 6$ ， $54 \cdot 8,50 \cdot 6,48 \cdot 0,47 \cdot 0,40 \cdot 6,39 \cdot 3,37 \cdot 4,36 \cdot 4,31 \cdot 7,31 \cdot 3,30 \cdot 1$ ， $27 \cdot 2,24 \cdot 0,23 \cdot 8,18 \cdot 5,16 \cdot 3$ ；MS m／e $384\left(\mathrm{M}^{+}\right), 366,314,274$ ， 167， 110 （base peak），97；HRMS m／e $\left(\mathrm{M}^{+}\right)$calculated 384.1372 ，observed $384.1375 ; \mathrm{HCl}$ salt： $\mathrm{mp} 260-261^{\circ} \mathrm{C}$ （white crystals from ethyl acetate）；Anal．calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}, \mathrm{HCl}$ ： $\mathrm{C} 54 \cdot 10, \mathrm{H} 6.45$ ， N 6.64 ，found： C 53.94 ，H 6．32，N 6.56 ．
（土）－（1 $\alpha, 2 \beta, 4 \alpha)$－3，4－Dichloro－N－methyl－N－［4－benzoyloxy－2－（1－ pyrrolidiny）－cyclohexyl］benzeneacetamide（5）．To a stirred solution of $1(280 \mathrm{mg}, 72.7 \mathrm{mmol})$ in dry pyridine（ 5 mL ）at $70^{\circ} \mathrm{C}$ under N_{2} ，was added benzoyl chloride（ 1 mL ）．The mixture was stirred for 1 h ，cooled to room temperature，and evaporated，The residue was treated with saturated aqueous NaHCO_{3} solution（ 10 mL ），and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml} \times 3)$ ．The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ ， and evaporated to give a crude product，which was chromato－ graphed（silica gel；EtOAc：HOAc $=100: 1$ ，followed by EtOAc： $\left.\mathrm{CH}_{3} \mathrm{OH}: \mathrm{HOAc}=100: 40: 1\right)$ to give $5(200 \mathrm{mg}$ ， 56% ）： HCl salt： $\mathrm{mp} 230.5-232 \cdot 5^{\circ} \mathrm{C}$（white crystals from isopropanol）；${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.0-7.9(\mathrm{~m}, 2 \mathrm{H})$ ，
$7.6-7.5(\mathrm{~m}, 1 \mathrm{H}), 7.5-7.4(\mathrm{~m}, 2 \mathrm{H}), 7.4-7 \cdot 3(\mathrm{~m}, 2 \mathrm{H}), 7 \cdot 1-7 \cdot 0$ $(\mathrm{m}, 1 \mathrm{H}), 5.4(\mathrm{~s}, 1 \mathrm{H}), 4.7-4.6(\mathrm{~m}, 1 \mathrm{H}), 3 \cdot 7-3.6(\mathrm{~m}, 2 \mathrm{H}), 3.2-$ $3 \cdot 1(\mathrm{~m}, 1 \mathrm{H}), 2 \cdot 8(\mathrm{~s}, 3 \mathrm{H}), 2 \cdot 7-2 \cdot 4(\mathrm{~m}, 4 \mathrm{H}), 2 \cdot 3-2 \cdot 2(\mathrm{~m}, 1 \mathrm{H})$, $2 \cdot 1-2.0(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.6(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{HCl}$ salt, $\left.\mathrm{DMSO}_{\mathrm{d}-6}\right) \delta(\mathrm{ppm}) 172 \cdot 5,165 \cdot 7,138 \cdot 6,134 \cdot 2,133 \cdot 0,131 \cdot 5$, $131 \cdot 1,130 \cdot 7,130 \cdot 5,129.5,69 \cdot 6,57 \cdot 5,52 \cdot 5,48 \cdot 4,31 \cdot 2,28 \cdot 5$, $27 \cdot 9,25 \cdot 2,24 \cdot 9,24 \cdot 2$; MS m/e $488\left(\mathrm{M}^{+}\right), 383,367,271,230$, 149 (base peak), 105, 97, 84, 77, 70, 55; HRMS m/e (M^{+}) calculated $488 \cdot 1634$, observed $488 \cdot 1633$.
(\pm)-($1 \alpha, 2 \beta, 5 \alpha)$-3,4-Dichloro-N-methyl-N-[[5-benzoyloxy-2-(1-pyrrolidinyl)]-cyclohexyllbenzeneacetamide (7). Compound 3 ($200 \mathrm{mg}, 519 \mathrm{mmol}$) was subjected to the same procedure as described above to give 7 ($147 \mathrm{mg}, 58 \%$): HCl salt: $\mathrm{mp} 150-$ $154^{\circ} \mathrm{C}$ (white crystals from isopropanol); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm) 8.0-7.9 (m, 2 H), 7.6-7.5 (m, 1 H), 7.5-7.4 (m, 2 H), $7.4-7 \cdot 3(\mathrm{~m}, 2 \mathrm{H}), 7 \cdot 1-7.0(\mathrm{~m}, 1 \mathrm{H}), 5 \cdot 1-5 \cdot 0(\mathrm{~m}, 1 \mathrm{H}), 4 \cdot 9-4 \cdot 7$ $(\mathrm{m}, 1 \mathrm{H}), 3.9-3 \cdot 6(\mathrm{~m}, 3 \mathrm{H}), 2 \cdot 9(\mathrm{~s}, 3 \mathrm{H}), 2 \cdot 8-2 \cdot 4(\mathrm{~m}, 4 \mathrm{H}), 2 \cdot 4$ $1.2(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170 \cdot 0,165 \cdot 6,135 \cdot 5$, $132 \cdot 9,130 \cdot 8,130 \cdot 4,129.5,128 \cdot 3,71 \cdot 5,59 \cdot 3,58 \cdot 0,48 \cdot 7,47 \cdot 6$, $40.7,39.5,36 \cdot 0,34 \cdot 8,31 \cdot 0,27.5,24 \cdot 0,19.0$; MS m/e 418, 366,149 (base peak), 136, 110, 97 ; HRMS m/e (M^{+}) calculated $488 \cdot 1634$, observed $488 \cdot 1627$.
(\pm)-($1 \alpha, 2 \beta, 5 \beta)-3,4$-Dichloro-N-methyl-N-[5-benzoyloxy-2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide (8). Compound 4 ($200 \mathrm{mg}, 519 \mathrm{mmol}$) was subjected to the same procedure for 5 to give $8(157 \mathrm{mg}, 62 \%): \mathrm{HCl}$ salt : $\mathrm{mp} 215-218^{\circ} \mathrm{C}$ (white crystals from isopropanol); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.0-7.9$ $(\mathrm{m}, 2 \mathrm{H}), 7 \cdot 6-7.5(\mathrm{~m}, 1 \mathrm{H}), 7 \cdot 5-7.4(\mathrm{~m}, 2 \mathrm{H}), 7 \cdot 4-7 \cdot 3(\mathrm{~m}, 2 \mathrm{H})$, $7 \cdot 1-7.0(\mathrm{~m}, 1 \mathrm{H}), 5 \cdot 4-5 \cdot 3(\mathrm{~m}, 1 \mathrm{H}), 5 \cdot 2-5 \cdot 0(\mathrm{~m}, 1 \mathrm{H}), 3 \cdot 7-3 \cdot 4$ (m, 3 H), $2.9(\mathrm{~s}, 3 \mathrm{H}), 2 \cdot 8-2 \cdot 4(\mathrm{~m}, 4 \mathrm{H}), 2 \cdot 4-1 \cdot 2(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 169.9,165 \cdot 6,165 \cdot 3,156 \cdot 8,135 \cdot 6$, $133 \cdot 2,133 \cdot 0,132 \cdot 3,131 \cdot 1,130 \cdot 7,130 \cdot 6,130 \cdot 2,130 \cdot 1,129 \cdot 5$, $129 \cdot 3,128 \cdot 7,128 \cdot 57,128 \cdot 4,128 \cdot 2,69 \cdot 9,69 \cdot 5,59 \cdot 6,58 \cdot 8,55 \cdot 8$, $48 \cdot 9,48 \cdot 3,40 \cdot 5,39 \cdot 4,34 \cdot 8,33 \cdot 9,33 \cdot 5,30 \cdot 4,29 \cdot 0,28 \cdot 7,27 \cdot 2$, $25 \cdot 6,24 \cdot 8,24 \cdot 1,23 \cdot 7,19 \cdot 8,17 \cdot 8$; MS m/e $488\left(\mathrm{M}^{+}\right), 366,149$ (base peak), 136, 110; Anal. calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{2}$, HCl: C 59.72, H 5.94, N 5.33, found: C 59.50, H 5.99, N 5.65.
(\pm)-($1 \alpha, 2 \beta, 4 \beta$)-3,4-Dichloro-N-methyl-N-[4-benzoyloxy-2-(1-pyrrolidiny)-cyclohexyllbenzeneacetamide (6). To a stirred solution of $1(2.13 \mathrm{~g}, 5.53 \mathrm{mmol}), \mathrm{PPh}_{3}(2.90 \mathrm{~g}, 11.1 \mathrm{mmol})$ and benzoic acid ($1.35 \mathrm{~g}, 11.1 \mathrm{mmol}$) in dry THF (80 mL) under N_{2} at room temperature, was added a solution of diethyl azodicarboxylate ($1.93 \mathrm{~g}, 11.1 \mathrm{mmol}$) in dry THF (20 mL). The resulting mixture was stirred continuously overnight. After evaporation of THF, the residue was chromatographed (silica gel, EtOAc: $\mathrm{HOAc}=100: 1$, followed by $\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{OH}=$ $10: 1$) to give 6 as a white solid ($444 \mathrm{mg}, 16.4 \%$): HCl salt: mp $146-149^{\circ} \mathrm{C}$ (white crystals from isopropanol); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.0-7.9(\mathrm{~m}, 2 \mathrm{H}), 7.6-7.5(\mathrm{~m}, 1 \mathrm{H}), 7.5-$ $7.4(\mathrm{~m}, 2 \mathrm{H}), 7 \cdot 4-7 \cdot 3$ (m, 2 H$), 7 \cdot 1-7 \cdot 0(\mathrm{~m}, 1 \mathrm{H}), 5 \cdot 0-4 \cdot 9(\mathrm{~m}, 1$ H), 5.7-5.5 (m, 1 H), 3.8-3.6 (m, 2 H$), 2 \cdot 9-2 \cdot 8(\mathrm{~m}, 1 \mathrm{H}), 2 \cdot 8$ (s, 3 H), 2.7-2.5 (m, 4 H$), 2 \cdot 5-1.9(\mathrm{~m}, 3 \mathrm{H}), 1.9-1.5(\mathrm{~m}, 7 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{HCl}\right.$ salt, $\left.\mathrm{DMSO}_{\mathrm{d}-6}\right) \delta(\mathrm{ppm}) 172 \cdot 6,165 \cdot 8,138 \cdot 5$, $134 \cdot 4,132 \cdot 9,131 \cdot 5,131 \cdot 1,130 \cdot 7,130 \cdot 5,130 \cdot 1,129 \cdot 6,71 \cdot 3$, $58.3,52 \cdot 5,48 \cdot 6,30 \cdot 1,29.2,25 \cdot 5,25 \cdot 1,24.8,23 \cdot 7$; MS m/e 383, 367, 271, 230, 159, 149 (base peak), 105, 97, 84, $77,70,55 ;$ HRMS m/e (M^{+}) calculated $488 \cdot 1634$, observed $488 \cdot 1629$.
(土)-(1 $\alpha, 2 \beta, 4 \beta)-3,4-D i c h l o r o-N-m e t h y l-N-[4-h y d r o x y-2-(l-p y r-$ rolidiny)-cyclohexyljbenzeneacetamide (2). To a stirred solution of $6(211 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(40 \mathrm{~mL})$ at room temperature was added $40 \% \mathrm{NaOH}(2 \mathrm{~mL})$. The resulting mixture was kept stirring for 2 h . After evaporation of $\mathrm{CH}_{3} \mathrm{OH}$, the residue was treated with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 2 as a yellow solid ($152 \mathrm{mg}, 92 \%$): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.4-7.3$ (m, 2 $\mathrm{H}), 7 \cdot 1-7 \cdot 0(\mathrm{~m}, 1 \mathrm{H}), 4.5-4.4(\mathrm{~m}, 1 \mathrm{H}), 3 \cdot 7-3 \cdot 5(\mathrm{~m}, 3 \mathrm{H}), 2 \cdot 7$ $(\mathrm{s}, 4 \mathrm{H}), 2.6-2.4(\mathrm{~m}, 5 \mathrm{H}), 2.4-1.9(\mathrm{~m}, 4 \mathrm{H}), 1.7-1.5(\mathrm{~m}, 4 \mathrm{H})$, $1.4-1.3(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{HCl}\right.$ salt, $\left.\mathrm{DMSO}_{\mathrm{d}-6}\right) \delta(\mathrm{ppm})$ $172 \cdot 5,138 \cdot 5,132 \cdot 9,131 \cdot 5,131 \cdot 4,131 \cdot 1,130 \cdot 7,129 \cdot 6,67 \cdot 6$, $67 \cdot 0,60 \cdot 1,58 \cdot 7,52 \cdot 3,51 \cdot 7,25 \cdot 1,24 \cdot 8,22 \cdot 2,21 \cdot 4$; MS m/e $384\left(\mathrm{M}^{+}\right), 367,314,271,230,179,167,126$ (base peak), 97 , 84, 70, 56; HRMS m/e ($\mathrm{M}^{+}+2$) calculated 386.1343, observed $386 \cdot 1342$.

Opioid-receptor binding assay

Brain membranes were prepared from male Hartley guinea-pigs, and binding was performed by literature procedures (Tam 1985) with modification. The following labelled ligands were used: $1.0 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ DAMGO (μ-binding); $2.0 \mathrm{nM} \quad\left[{ }^{3} \mathrm{H}\right]$ ethylketocyclazocine with 500 nM DADLE and 500 nM DAMGO (κ-binding); 2.0 nM [$\left.{ }^{3} \mathrm{H}\right]$ DADLE with 100 nM morphiceptin (δ-binding); nonspecific binding was determined with 1 mM DAMGO (μ-binding), 10 mM naloxone and U-50,488 (κ-binding), and 10 mM naloxone and DADLE (δ-binding). Radioactivity was determined by scintillation counting. Protein was determined by the method of Lowry et al (1951). The IC50 and K_{i} values were determined with the program by McPherson (1983), which is a modification of the LIGAND program originally written by Munson \& Rodbard (1980).

Results and Discussion

Syntheses

Three out of the four hydroxy derivatives, namely compounds 1,3 and 4 , and their benzoate esters 5,7 and 8 were synthesized in a divergent manner according to Scheme 1. The starting 1,4-cyclohexanediol was subjected to tosylation under carefully controlled reaction conditions to give predominantly the mono-tosylate as shown, which underwent E2 elimination reaction effected by DBU to give 3-cyclohexen-1-ol (9) in 60% yield. Protection of the hydroxy function in 9 with a tertbutyldimethylsilyl group, followed by epoxidation with m CPBA resulted in the formation of a pair of diastereomeric epoxides $\mathbf{1 1}$ and $\mathbf{1 2}$ in a ratio of $57: 43$, as determined by GC analysis. A mixture of epoxides $\mathbf{1 1}$ and $\mathbf{1 2}$ was then subjected to ring-cleavage reaction with pyrrolidine to give, after chromatography, trans-aminoalcohols 13,14 , and 15 in a molar ratio of $8: 69: 23$. Compounds 13 and 15 were derived from epoxide 12, while out of the two possible isomers from epoxide 11 , only compound 14 was obtained. The regiochemistry of these aminoalcohols can be easily determined via the use of EI-mass spectrometry, with the corresponding azadienium ion fragments appearing as base peaks (Fig. 2); while the assignment of their relative stereochemistry is supported by NMR nOe experiment. Only compound 13 showed measurable dipolar coupling between its protons at $\mathrm{C}-2$ and $\mathrm{C}-4$ (Fig. 3). A

SCHEME 1. Synthesis of compounds $\mathbf{1 , 3 , 4 , 5 , 7}$ and $\mathbf{8}$. Reagents and conditions: a, TsCl , pyridine, $0^{\circ} \mathrm{C} ; \mathrm{b}, \mathrm{DBU}, 120^{\circ} \mathrm{C} ; \mathrm{c}, \mathrm{TBDMSCl}$, imidazole, THF, reflux; d, m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; e, pyrrolidine, reflux; f, $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}, 0^{\circ} \mathrm{C}$; g, $40 \% \mathrm{CH}_{3} \mathrm{NH}_{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$, THF, reflux; h, $\mathrm{ClOCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}, \mathrm{NEt}_{3} \mathrm{Z}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.; $\mathrm{i}, 10 \% \mathrm{HCl}$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, r.t.; j, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$, pyridine, $70^{\circ} \mathrm{C}$.
mixture of 13,14 , and 15 was then subjected to a sequence of three transformations, namely mesylation, displacement with methylamine, followed by amide formation with 3,4 -dichlorophenylacetylchloride. Since the displacement reaction proceeds via the intermediate aziridinium ions through participation of the neighbouring pyrrolidine nitrogen, as shown in Scheme 2, only trans amino-acetamides 16,17 and 18 were obtained in a ratio of $52: 12: 36$. Again, the regiochemistry of 16-18 as assigned was determined by EI-mass spectrometry. The stereochemistry of compound $\mathbf{1 6}$ has been unambiguously
determined by X-ray structure analysis on its hydrochloride salt. As shown in Fig. 4, the cyclohexane ring of 16 assumes a chair conformation. The pyrrolidine ring and the amide side chain are both in the equatorial position and thus trans to each other; while the tert-butyldimethylsilyloxy group, despite its bulkiness, positions itself in the axial position and trans to the pyrrolidine ring. Compounds $\mathbf{1 6 - 1 8}$ were then subjected to desilylation via treatment with aqueous hydrochloric acid to give target compounds 1,3 and 4 respectively, which were further reacted with benzoyl chloride to provide the corre-

Fig. 2. Major EI-mass fragments from compounds 13-15.

SCHEME 2. Mechanism for the formation of compounds 16-18 from 13-15. Reagents and conditions: as defined in Scheme 1.

$\mathrm{nOe}=1.85 \%$
Fig. 3. nOe coupling between protons at $\mathrm{C}-2$ and $\mathrm{C}-4$ of compound 13.
sponding benzoates 5, 7 and 8 . Finally, the $4-\beta$ isomer compound 2, which cannot be obtained via Scheme 1, was prepared from its epimer compound 1 via a Mitsunobu reaction (Mitsunobu 1981) with benzoic acid followed by alkaline hydrolysis, as shown in Scheme 3.

Pharmacology

Table 1 lists the μ - and κ-opioid receptor binding affinities of our target compounds $1-8$ and that of U-50488. All four monohydroxy derivatives 1-4 maintained good selectivity towards the κ-opioid receptor, the μ / κ ratio ranging from 24 to >91. The $4-\alpha, 4-\beta$, and $5-\alpha$ isomers (compounds $1-3$) are about equipotent at the κ-opioid receptor ($\mathrm{K}_{\mathrm{i}, \kappa}=75-110 \mathrm{nM}$) and approximately one order of magnitude less potent than U50488 . The 5 - β isomer compound 4 , with its 5 -hydroxyl group oriented preferentially in an axial position, is the least potent among the four hydroxy derivatives ($\mathrm{K}_{\mathrm{i}, \kappa}=218 \mathrm{nM}$) and about 30 times less potent than U-50488. The above observation is consistent with earlier findings by Halfpenny et al (1990) that the 5- β methoxy derivative Id is also the least potent among a series of monomethoxy derivatives of PD-117302 (Ia-d).

Fig. 4. X-ray crystal structure of the HCl salt of compound $\mathbf{1 6}$.

Scheme 3. Synthesis of compounds 2 and 6 from 1. Reagents and conditions: a, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, diethylazodicarboxylate, THF, r.t.; b, $\mathrm{NaOH}_{(a q)}, \mathrm{CH}_{3} \mathrm{OH}$, r.t.

Table 1. μ - and κ-Opioid receptor binding affinities of 4 - or 5 -monohydroxy derivatives of $\mathrm{U}-50,488$ and their benzoates.

		Binding affinity $\left[\mathrm{K}_{\mathrm{i}}(\mathrm{nM})\right]^{\mathrm{a}}$		
Compound	Substitution	μ	κ	μ / κ Ratio $^{\mathrm{b}}$
$\mathbf{1}$	$4-\alpha-\mathrm{OH}$	4893 ± 673	75.0 ± 10.7	65
$\mathbf{2}$	$4-\beta-\mathrm{OH}$	710000	$110.0 \pm 6 \cdot 7$	>91
$\mathbf{3}$	$5-\alpha-\mathrm{OH}$	2097 ± 491	86.9 ± 9.7	24
$\mathbf{4}$	$5-\beta-\mathrm{OH}$	13330 ± 1900	218 ± 36	61
$\mathbf{5}$	$4-\alpha-\mathrm{OBz}$	167.9 ± 62.6	2204 ± 404	0.076
$\mathbf{6}$	$4-\beta-\mathrm{OBz}$	954.7 ± 261.0	333.4 ± 46.9	2.9
$\mathbf{7}$	$5-\alpha-\mathrm{OBz}$	20000 ± 2800	282 ± 35	71
$\mathbf{8}$	$5-\beta-\mathrm{OBz}$	5692 ± 1576	476 ± 98	12
$\mathrm{U}-50,488$		762 ± 9.5	7.5 ± 1.3	102

[^1]The effects of benzoylating the hydroxyl functions in compounds 1-4 on their opioid receptor affinity are dependent on the receptor type and the position of the hydroxyl function. With the $4-\beta, 5-\alpha$ and $5-\beta$ isomers (compounds 6-8), a 2 - to $3-$ fold reduction in κ-affinity was observed; while a dramatic 30 fold reduction in κ-affinity was observed with the $4-\alpha$ isomer 5 . At the μ-opioid receptor, only the $5-\alpha$ or 5 -equatorial isomer 7 showed reduced binding; while the $5-\beta(\mathbf{8}), 4-\beta$ (6), and $4-\alpha$ (5) isomers demonstrated respectively a 2 -fold, >10-fold and 30 fold increase in binding affinity. It is particularly noteworthy that the $4-\alpha$ isomer 5 , with its benzoate moiety at the 4 -axial position, is now a moderately potent and selective ligand at the μ-opioid receptor ($\mathrm{K}_{\mathrm{i}, \mu}=168 \mathrm{nM}, \mu / \kappa=0.076$).
In conclusion, the opioid activity of κ-selective $N-[2-(1-$ pyrrolidinyl)cyclohexyl]benzeneacetamides such as U-50488 is significantly reduced when a hydroxyl group is attached to the $\mathrm{C}-4$ or $\mathrm{C}-5$ position. The observed reduction in opioid affinity is likely to result from decreased lipophilicity since the analogous substitution with a methoxy group resulted in comparable or enhanced opioid activity (Halfpenny et al 1990). Substitution at the $4-\alpha$ or 4 -axial position with a benzoate moiety resulted in reversal of opioid selectivity, producing a moderately potent and selective ligand (5) for the μ-opioid receptor, indicating the presence of a specific lipophilic binding site on the μ-opioid receptor.

Acknowledgments

We thank the National Science Council of the Republic of China for financial support (NSC82-0420-B-002-462).

References

Chen, C. Y., Shen, M. Y., Cheng, C. Y. (1993) Stereoselective synthesis of a 4-hydroxy derivative of the κ-selective opioid U50488. Chin. Pharm. J. 45: 261-268

Cheng, C. Y., Wu, S. C., Hsin, L. W., Tam, S. W. (1992) Selective reversible and irreversible ligands for the κ opioid receptor. J. Med. Chem. 35: 2243-2247
Halfpenny, P. R., Horwell, D. C., Hughes, J., Hunter, J. C., Rees, D. C. (1990) Highly selective κ-opioid analgesics. 3. Synthesis and structure-activity relationships of novel N -[2-(1-pyrrolidinyl)-4- or -5 -substituted-cyclohexyl]arylacetamide derivatives. J. Med. Chem. 33: 286-291
Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275
McPherson, G. A. (1983) A practical computer-based approach to the analysis of radioligand binding experiments. Computer Prog. Biomed. 17: 107-114
Millan, M. (1990) κ-Opioid receptors and analgesia. Trends Pharmacol. Sci. 11: 70-76
Mitsunobu, O. (1981) The use of diethyl azodicarboxylate and triphenylphosphine in the synthesis and transformation of natural products. Synthesis: 1-28
Munson, P. J., Rodbard, D. (1980) LIGAND: a versatile computerized approach for characterization of ligand binding systems. Anal. Biochem. 107: 220-239
Scopes, D. I. C. (1993) Recent development in non-peptide kappa receptor agonists. Drugs Future 18: 933-947
Scopes, D. I. C. (1994) Selective nonpeptide kappa opioid receptor agonists. Exp. Opin. Invest. Drugs 3: 369376
Szmuszkovicz, J., Von Voigtlander, P. F. (1982) Benzeneacetamide amines: structurally novel non-mu opioids. J Med. Chem. 25: 11251127
Tam, S. W. (1985) (+) $-\left[{ }^{3} \mathrm{H}\right]$ Ethylketocyclazocine, μ, κ, δ and phencyclidine binding sites in guinea pig brain membranes. Eur. J. Pharmacol. 109: 33-41

[^0]: Correspondence: C.-Y. Cheng, School of Pharmacy, National Taiwan University, 1, Sec 1, Jen-Ai Road, Taipei, Taiwan 10018. E-mail: cyc@ka.mc.ntu.edu.tw

[^1]: ${ }^{a}$ Data represents the mean \pm s.e.m. of three experiments, each performed in duplicate. ${ }^{\mathrm{b}} \mu / \kappa$ ratio $=\mathrm{K}_{\mathrm{i}}(\mu) / \mathrm{K}_{\mathrm{i}}(\kappa)$.

